Multi-modal respiratory motion prediction using sequential forward selection method
نویسندگان
چکیده
In robotic radiotherapy, systematic latencies have to be compensated by prediction of external optical surrogates. We investigate possibilities to increase the prediction accuracy using multi-modal sensors. The measurement setup includes position, acceleration, strain and flow sensors. To select the most relevant and least redundant information from the sensors and to limit the size of the feature set, a sequential forward selection (SFS) method is proposed. The method is evaluated with three prediction algorithms – the least means square (LMS) algorithm, a wavelet-based LMS algorithm (wLMS) and an algorithm using relevance vector machines (RVM). We show that multi-modal inputs can easily be integrated into general algorithms. The relative root mean square error (RMSrel) of the best predictor, RVM, could be decreased from 60.5 % to 49.0 %. Furthermore, the results indicate that more complex algorithms can efficiently use different modalities like acceleration which are less correlated with the optical sensor to be predicted. keywords: radiosurgery, respiratory motion prediction, feature selection
منابع مشابه
Applying Combined Approach of Sequential Floating Forward Selection and Support Vector Machine to Predict Financial Distress of Listed Companies in Tehran Stock Exchange Market
Objective: Nowadays, financial distress prediction is one of the most important research issues in the field of risk management that has always been interesting to banks, companies, corporations, managers and investors. The main objective of this study is to develop a high performance predictive model and to compare the results with other commonly used models in financial distress prediction M...
متن کاملDynamic MLC Tracking Using 4D Lung Tumor Motion Modelling and EPID Feedback
Background: Respiratory motion causes thoracic movement and reduces targeting accuracy in radiotherapy. Objective: This study proposes an approach to generate a model to track lung tumor motion by controlling dynamic multi-leaf collimators. Material and Methods: All slices which contained tumor were contoured in the 4D-CT images for...
متن کاملComparison of Feature selection methods for diagnosis of cervical cancer using SVM classifier
Even though a great attention has been given on the cervical cancer diagnosis, it is a tuff task to observe the pap smear slide through microscope. Image Processing and Machine learning techniques helps the pathologist to take proper decision. In this paper, we presented the diagnosis method using cervical cell image which is obtained by Pap smear test. Image segmentation performed by multi-thr...
متن کاملEpileptic seizure detection based on The Limited Penetrable visibility graph algorithm and graph properties
Introduction: Epileptic seizure detection is a key step for both researchers and epilepsy specialists for epilepsy assessment due to the non-stationariness and chaos in the electroencephalogram (EEG) signals. Current research is directed toward the development of an efficient method for epilepsy or seizure detection based the limited penetrable visibility graph (LPVG) algorith...
متن کاملFast SFFS-Based Algorithm for Feature Selection in Biomedical Datasets
Biomedical datasets usually include a large number of features relative to the number of samples. However, some data dimensions may be less relevant or even irrelevant to the output class. Selection of an optimal subset of features is critical, not only to reduce the processing cost but also to improve the classification results. To this end, this paper presents a hybrid method of filter and wr...
متن کامل